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Abstract

Communication of data is ubiquitous in today’s world. Whether within a

device or between devices, reliable data transfer is essential to proper function

of the databases, applications, servers, and computers that comprise today’s

technological systems. Errors, however, do occur. They must be corrected. And

math can help.

Here we present an introduction to coding theory. We will use Reed-Solomon

Codes as a real-world example demonstrating some of its fundamental principles.



1 Introduction

The term Coding Theory is loosely used to describe any mathematical methods

of manipulating data, including cryptography and data compression, but it has come

to refer primarily to the study of error correcting codes. For the rest of this paper, this

is what we mean by any references to ‘codes’ or ‘coding theory.’ This study contrasts

with cryptography in that while cryptography aims to make data undecodable (to

unintended recipients), the aim of coding theory is to make data intelligible despite

interference. It contrasts with data compression in that while data compression com-

pacts data by eliminating redundancy, coding theory makes data bigger by adding

redundancy. [C, 1] Like cryptography and data compression, coding theory is used in

the contexts of data storage and transmission.

The need for reliable transmission of data is rapidly increasing as the number

of types of technological systems in use escalates. Watches, phones, radios, tablets,

speaker systems, computers, cars, satellites, and routers must communicate with each

other over various channels ranging from a few feet to thousands of miles. Sometimes

these channels have the assistance of wires, but sometimes they do not. Data trans-

mission also occurs within devices, such as computer systems busing information

between the hard drive, main memory, CPU, keyboard, and CD reader. Some data

transmission is by humans directly, such as typing products into an on-line catalog

or database.

But just as how in a loud room you may mishear what your friend is saying due

to the noise, various real-world factors can disrupt the integrity (accuracy) of data.

Incidentally, we use the same term, noise, to describe the interference that occurs

on data. In the case of wi-fi, such interference may be frequencies emitted by a

microwave; in the case of satellites, it may be a cloud in the sky; in the case of a CD

reader it may be scratches or dust on the CD; and in the case of a human it may

just be sloppy typing fingers. Due to these and other factors, transmission cannot be

guaranteed to proceed without error.

Consequently, a whole branch of Mathematics and Theoretical Computer Science

has been developed to deal with this issue effectively and efficiently.

2 Background

To understand the motivation and terminology behind this study, let us return

to the example of a noisy room. Consider such circumstances under which you hear
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your friend say “Hă-foo seen my —llet?” where the dashes represent muffled sounds

that were covered up by a shout in the room. Immediately you can detect an error

simply from the fact that the sounds ‘Hă-foo’ do not form a word in your vocabulary.

In considering the sounds, however, you easily recognize them as being similar to the

sounds ‘Have you’ and interpret them as such. Similarly, though you didn’t catch

the whole of the last word, in considering the words you know that end in ‘-llet,’ and

perhaps some other context (such as a wallet sitting on the table in front of you), you

correctly interpret the complete phrase as “Have you seen my wallet?”

In coding theory the set of possible symbols from which a message can be com-

prised is called the alphabet (denoted A), and is analogous to the set of possible

sounds in the previous example. Sequences of symbols from A are elements of the set

A∗ (or An for sequences of a specific length n) and are called strings. They corre-

spond to combinations of sounds. Just as words are valid combinations of sounds in a

vocabulary, codewords c are valid strings in a code C. This of course suggests that

there are non-valid combinations of sounds in a vocabulary and that not every string

in An is also in C. In other words, C ⊂ An, where n is the length of the code. When

a string s is received such that s /∈ C, we detect that at least one symbol of that

string is an error, just as you knew at least one sound in ‘Hă-foo’ was heard in error

because it is not a word. Sometimes, due to the way hardware works, we can know

it pretty likely that a specific symbol is in error and treat it as a dropped symbol,

or erasure in the received string. This correlates to how a shout created enough

disruption in the communication channel to cause you to regard the first sounds of

‘wallet’ as missing rather than being ‘brace-’ or ‘in-.’ Erasures are actually preferable

to errors because they tell us with which character in a string an error occurred.

Given knowledge of errors and erasures, we can often correct a string to the codeword

c that is most similar.

For example, let A = {0 − 9, a − z,A − Z}, the set of legal symbols to use in

a certain password. If the password must be eight characters and contain at least

one of each type, then C is a subset of A8, and it consists of all codewords c that

fulfill the above condition. One possible such codeword would be I8tb4uop, and if

it was received from transmission as i8tb4uop, we could detect that the string is not

a codeword because it has no upper-case letter. In other words, we detect an error.

Although error correction will rarely, if ever, be used on passwords, this demonstrates

how a code is a subset of the possible strings over an alphabet.

In some sense, these examples demonstrate the inefficiency of data encoding and
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language. That is, a code of just as many elements could be generated using fewer

symbols per codeword and a language of just as many words could be generated using

fewer sounds per word. Returning to the password example, we could use every possi-

ble combination of symbols from the alphabet and not restrict the criteria for a valid

password to generate just as many passwords as in the previous example, while need-

ing fewer than eight characters. In the case of language, we could shorten the length

of words by designating meaning to syllables like ‘bu’ or ‘ek’ before having words

like ‘compartmentalization’ in our vocabulary. Now, that is not the way language

develops, but these example demonstrate the way that the length of the medium used

to convey an idea (or password) is often longer than the minimum possible length of

the idea expressed by that message.

In coding theory we actually intentionally lengthen our initial information by

adding data symbols to the end or by systematically manipulating the data string

to something wholly different and longer. Just as the function y = 2x transforms

elements of Z to elements of 2Z (the even integers), coding theory transforms in-

formation from the set of possible data strings to elements of C. This functional

transformation is also known as mapping, and the rule which governs it is a map-

ping function. The length of the data before mapping it to the code is typically

denoted k, the length of the code is typically denoted n, and a code that is designed

around such a transformation is denoted C(n, k). The difference in length that this

process adds without adding new information is known as redundancy.

This lengthening of the data, however, is exactly what enables us to detect and

correct errors. Recall the example where you correctly interpreted what you misheard

from your friend. If all sound combinations had meaning, you would never even have

realized that you misheard your friend. Similarly, if all strings were codewords, we

could never detect an error, much less correct one. A typical way of correcting is to

find the codeword with the least difference from the received string. This amount of

difference between particular codewords, measured simply as the number of symbols

which differ between them, is called the distance, and for a code C, the least distance

that exists between distinct elements of C is the minimum distance dmin. If the

number of errors that occur on a codeword is not less than dmin, there is a risk

that the received string is another codeword and that the error will not be detected.

Similarly, if the number of errors is not less than
dmin

2
, the received string may be

more similar to a different codeword than the one it is supposed to be, and correction

techniques will not be effective. Hence (as shown in [H, 2]), a code can correct up to
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t errors, where

t ≤ bdmin − 1

2
c. (1)

For these reasons, a good code will have a large minimum distance relative to the

amount of redundancy. The ratio of a code’s error correcting and detecting capability

to the amount of redundancy is its efficiency.

For example, let A = {1, 2, 3}, C = {1231, 1312, 2132, 3113, 2223, 3321} ⊂ A4,

and a, b ∈ C. For a = 1231 and b = 3113, the distance dist(a, b) = 4 because every

corresponding symbol differs between those codewords. The minimum distance of this

code is dmin(C) = 3 because any pair of codewords have at least three symbols which

differ. If b was received with one symbol error as b′ = 3123, we could successfully

correct it to the most similar codeword. If two symbol errors occurred such that

b′ = 3323, the most similar codeword would be 3321, not 3113, and error correction

would fail. This reflects that the max number of errors this code can handle is

bdmin − 1

2
c = b3− 1

2
c = 1.

3 Abstract Algebra Background

Coding Theory builds heavily upon abstract algebra. Consequently, this section

gives the mathematical background necessary to understand certain abstract struc-

tures sufficiently for this introductory paper. See [W, 45-60] for more review.

3.1 Fields

Consider the sets R,C, and Q which have the usual arithmetic properties of ad-

dition, subtraction, multiplication and division. Fields are simply a generalization

from sets with these properties. The formal set of properties for a field F is as follows.

• Existence of Additive Identity: There is an element 0 ∈ F such that 0 + a =

a = a+ 0 for all a ∈ F.

• Existence of Additive Inverses: For all a ∈ F, there is an element b ∈ F such

that a+ b = 0 = b+ a.

• Commutativity of Addition: For all a, b ∈ F, we have a+ b = b+ a.

• Associativity of Addition: For all a, b, c ∈ F, we have (a+ b) + c = a+ (b+ c).

4



• Existence of Multiplicative Identity: There is an element 1 ∈ F such that 1a =

a = a1 for all a ∈ F.

• Existence of Multiplicative Inverses: For all a ∈ F {0}, there is an element b ∈ F
such that ab = 1 = ba.

• Commutativity of Multiplication: For all a, b ∈ F, we have ab = ba.

• Associativity of Multiplication: For all a, b, c ∈ F, we have (ab)c = a(bc).

• Distributive Laws: For all a, b, c ∈ F, we have a(b+ c) = ab+ ac and (a+ b)c =

ac+ bc.

Note that Z is not a field because it lacks existence of multiplicative inverses. That

is, for 5 ∈ Z, there is no b ∈ Z such that 5b = 1. Some less familiar fields which can

be shown to possess all these properties are Q(x) (the set of ratios of polynomials

with coefficients in Q) and n× n diagonal matrices with entries from Q.

3.2 Finite Fields

A finite field is simply a field with a finite number of elements. The simplest

example of this is the integers modulo a prime p, represented Z/pZ or Fp. This set

can be represented as the numbers 0 through p− 1.

The arithmetic operations of such fields work by ‘wrapping around.’ For example,

adding 1 to p − 1 results in 0, and subtracting 1 from 0 results in p − 1. In general,

for a result r from an arithmetic operation in Z, the result of that operation in Fp is

the remainder of
r

p
. So while 4+3 = 7 in Z, 4+3 = 2 in F5 because remainder(

r

p
) =

remainder(
7

5
) = 2. Formally, we write this 7 ≡ 2 mod 5. Similarly, while 4 · 4 = 16

in Z, 4 · 4 = 1 in F5 because 16 ≡ 1 mod 5.

A slightly more complex finite field is the set of polynomials of degree less than

some d with coefficients in some Fp. There are pd elements because each of the d

coefficients can take on one of p values. Consequently, this field is represented Fpd .

As an example, let us consider F24 which contains elements such as a = x3+x2+1 and

b = x2 + x. Addition occurs coefficient-wise, so the sum of these two elements would

be x3 +x+ 1. Note that addition of the x2 coefficient resulted in a ‘wrapped around’

result because it was reduced to its equivalent modulo 2. Results of multiplication

are also modularly reduced to keep the degree less than d, but by reduction modulo
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a fixed irreducible polynomial that degree. An irreducible polynomial is a non-

constant polynomial that cannot be factored into the product of two non-constant

polynomials. In F24 , one such polynomial is x4 + x+ 1. Using a · b as an example of

this reduction, we have

(x3 + x2 + 1)(x2 + x) = x5 + x3 + x2 + x ≡ x3 mod (x4 + x+ 1)

because x5 + x3 + x2 + x = x3 + (x)(x4 + x+ 1).

We will see an example of a code that takes its symbols from the field F2m . In

such real-world cases, transmitting the full polynomials would be terribly inefficient,

so we abbreviate them to their coefficient lists and interpret them as polynomials.

Thus x3 + x2 + 1 becomes 1101 and x2 + x becomes 0110.

3.3 Vector Spaces

A vector space is a set closed under vector addition and scalar multiplication.

Each element of the vector space is called a vector, and is typically represented

as a list of coordinates, usually enclosed by brackets or parenthesis. Each of these

coordinates is a member of the field over which multiplication is defined. For example,

the real vector space of dimension n, denoted Rn, has elements (.3, 0) for n = 2 and

(−5,
√

2, 0, 1) for n = 4.

A linear subspace is simply subset of a vector space which is still a vector

space. It must contain the zero vector 0 and be closed under addition and scalar

multiplication. A subspace of R3 (three-dimensional real space) would be a plane

going through the origin, such as {(x, y, 0) for all x, y ∈ R}.
Every codeword and data string is a vector-like structure in that its symbols serve

as coordinates of the larger object. However, because a code need not be algebraic (if

its alphabet was {a − z}, addition would not really be defined), it is not necessarily

a vector space. When the alphabet of a code is a field F and the code is closed

under addition and multiplication by a constant, the code is a vector space and we

call it a linear code. In this case, C is not just a subset of An, but a subspace

of An. Throughout the rest of this paper, codewords and data strings will often be

represented as vectors or vector-like structures v = (v0, v1, ...), where the coordinates

vi are the letters, digits, or symbols that comprise the strings.
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4 Codes

We now turn back to codes, and examine a few examples of how these mathemat-

ical techniques can be used for error detection and correction.

4.1 Repetition

The r-Repetition Codes are a simple but terribly inefficient set of codes used

mostly for explanatory purposes. For initial data string d = d0d1...dn−1 over An

where A is a field, the codeword c = c0c1...cn·r−1 is defined as d repeated r times.

For example, for r = 3, A = F2, and d = 1011, c = 1011 1011 1011. The length of the

data is k = 4, so the code C has length n = k · r = 12. It is the set of twelve digit

binary strings c such that each section is identical: c0c1c2c3 = c4c5c6c7 = c8c9c10c11.

Let a position be the set of places relative to a section. For example, the underlined

places in c = 1011 1011 1011 represent the third position. Because changing one

codeword to another requires changing every digit in a given position, dmin = r. This

means that if less than r errors occur within a given position, we can detect the error.

If less than
r

2
errors occur in a given position, then over half the elements in that

position will still be correct and a majority vote will determine what the correct value

should be for all elements in that position. In other words, this code can correct up

to br − 1

2
c errors. This corresponds with (1) because r = dmin. We can tell that the

repetition code is linear because

• the zero vector consists of identical, repeated sections, and is therefore in the

code,

• the alphabet A is a field,

• and adding two codewords together or multiplying a codeword by a constant

from A results in a vector which also has identical sections, and is therefore a

member of the code.

Recall that because the list of digits that comprise a codeword are mathematically

being treated as elements of the vector space F2, addition and multiplication do not

carry to the next digit, but wrap around to zero. Repetition codes, while able to

correct an arbitrary number of errors by repeating more times, are too inefficient for

much actual use because they require adding 2k data symbols to guarantee correction

of an arbitrary error. [W, 2]
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4.2 ISBN-10

Found on the back of any book, the International Standard Book Number (ISBN)

is used to uniquely identify books around the world. We are going to focus on the

ISBN-10 code. As might be guessed, it consists of ten-symbol codewords, c1c2c3c4c5c6c7c8c9c10.

The first nine symbols are regular digits and are actually enough to identify a book,

while the tenth is a redundant check symbol from {0 − 9, X}. It is computed as a

weighted sum:

Let c′10 ≡ c1 + 2c2 + ...+ 9c9 mod 11.

Then c10 =

c′10, c′10 < 10 mod 11

X, c′10 ≡ 10 mod 11
.

For example, if the first nine digits are 123456789, c′10 ≡ 285 ≡ 10 mod 11, and

c10 = X. If the first nine digits are 987654321, c′10 ≡ 165 ≡ 0 mod 11, and c10 = 0.

This code is not a vector space because the elements do not admit multiplication by

members of a field (the first nine values are from a different set than the last), so the

code is not linear.

This code has the ability to detect all single digit and transposition errors, that

is, all cases where one digit is mistyped or two digits are typed in transposed order.

It does not offer the ability to correct errors. Rather, its strength lies in how, with

only one redundant digit and a simple encoding scheme, it can detect all the most

common errors. [W, 4]

4.3 Reed-Solomon Codes

Some particular applications which use Reed-Solomon codes are DVD’s, CD’s,

barcodes, cell phones, satellite communications, digital television, and high speed

modems. [RR] Denoted RS(n, k) for codewords of length n derived from initial data

of length k, they are non-binary, linear codes over some alphabet A = F2m . Non-

binary means that although it is used in electronic contexts where all data is a string

of bits (ones and zeros), each ‘character’ or ‘symbol’ in a data string or codeword is

not just a bit, but a grouping of m bits. Because grouping eight bits into a byte is

standard in computer science, m = 8 would be a logical choice for many applications.

Examples of such symbols in F2m are 101 for m = 3 and 11011001 for m = 8. Recall

that because these are elements of a field, these values are not decimal numbers or

binary values. That is, 101 ∈ F23 is not one hundred one, nor is it the binary value
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equivalent to five. More accurately, it represents the polynomial 1 · x2 + 0 · x + 1,

where the coefficients are elements of F2 and multiplication over x will ‘wrap around’

by reduction modulo a fixed irreducible polynomial of degree 3.

Consider the data string d = (d0, d1, ..., dk−1) of length k. Note that each of these

symbols di in the data string is not a single digit, but an element of F2m , and therefore

has a multi-digit representation (i.e. ‘101’). Define

F (x) = d0 + d1 · x+ ...+ dk−1 · xk−1, with x ∈ F2m .

The codeword corresponding to d is

c = (c0, c1, ..., cn−1) = (F (0), F (α), F (α2), ..., F (αn−1))

where 0, α, α2, ..., αn−1 are n elements of F2m . By taking the equation associated with

a coordinate of the codeword for each coordinate, we can form the system

F (0) = d0

F (α) = d0 + d1 · α+ d2 · α2 + ...+ dk−1 · αk−1

F (α2) = d0 + d1 · α2 + d2 · α2·2 + ...+ dk−1 · α2(k−1)

...

F (αn−1) = d0 + d1 · αn−1 + d2 · α2(n−1) + ...+ dk−1 · α(n−1)(k−1).

This gives us a system of n equations in k variables (solving for the di’s), but n > k,

so the system is over-determined. This means that we can select a subset of k of these

equations and still solve for d, as long as the coefficient matrix determined by those

equations is nonsingular (invertible). Luckily, it has been proved that any selection

of k equations from this set always generates such a matrix. Putting this system in

matrix form we have Md = c with solution d = M−1c. Taking the first k equations

as an example, we have

1 0 0 . . . 0

1 α α2 . . . αk−1

1 α2 α2·2 . . . α2(k−1)

...
...

...
. . .

...

1 αk−1 α2(k−1) . . . α(k−1)(k−1)





d0

d1

d2
...

dk−1


=



F (0)

F (α)

F (α2)
...

F (αk−1)


=



c0

c1

c2
...

ck−1


.
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This example uses only the first k symbols from the codeword to generate an equation

which is solvable for the original data string. [KK, 257-260]

Now, when errors or erasures occur, they correspond to symbols of the codeword

being wrong or missing, respectively. This means that any system which includes the

missing or erroneous symbol ci in its c vector will fail to correctly decode what d is.

So just how many errors and erasures can occur before this method will fail?

Theorem. Reed-Solomon Codes can correct t errors and v erasures as long as

2t+ v ≤ n− k.

Proof. As long as more systems decode to d than any other single data string, we

can take a majority vote to successfully determine the correct data string. This will

be the case when the erroneous codeword is closer to (has a smaller distance from)

the original codeword than any other c ∈ C. This suggests making use of (1). We

would rather not check every pair of codewords to determine the minimum distance,

so instead we will use the code’s algebraic properties. Because RS(n, k) is a linear

code, for a, b ∈ C we know also that a − b ∈ C. Because identical corresponding

symbols will cancel to zero in the subtraction,

dist(a, b) = dist(a− b,0) = weight(a− b).

So the minimum distance between every pair of codewords equals the weight of some

other codeword. This simplifies the problem because now we only need to find the

minimum weight of C, that is, the least number of non-zero coordinates in a codeword.

Now the generator polynomial for the ci’s, F (x) = d0 + d1 · x+ ...+ dk−1 · xk−1, has

degree of at most k − 1, and therefore has at most k − 1 roots. So the codeword

(F (0), F (α), F (α2), ..., F (αn−1)) has at most k− 1 coordinates which are zero. [G, 2]

Thus at least n− (k − 1) = n− k + 1 coordinates are non-zero, which means

weightmin(RS(n, k)) = dmin(RS(n, k)) ≥ n− k + 1.

Plugging this into (1) yields

t ≤ bn− k + 1− 1

2
c = bn− k

2
c =⇒ 2t ≤ n− k.

When v erasures occur, up to v of the non-zero coordinates are erased, thereby de-

creasing the effective minimum weight and distance. Consequently, for a system with
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v erasures, we adjust our previous equation by replacing n with n− v:

2t ≤ n− v − k =⇒ 2t− v ≤ n− k.

This gives the maximum number of errors and erasures that can occur such that

RS(n, k) can still properly decode.

Now the method of correcting by decoding all possible systems and comparing the

results, while mathematically sound, is temporally inefficient. It turns out to be the

simpler way of understanding the code, but know that in practice, there is a different,

more efficient way of doing this [KK, 262].

The fact that RS(n, k) has minimum distance n − k + 1 is actually optimal in

a way. [KK, 261] That is, relative to fixed values of n and k, it is impossible to

design a code with a smaller dmin. This makes Reed-Solomon codes a good choice for

many applications. In particular, consider circumstances where burst error, that is,

high noise occurring over several successive data bits, occurs. Because any number of

error bits within a symbol of F2m will only count as one error, Reed-Solomon codes are

particularly suited for these situations. On the other hand, a single bit of a symbol

being wrong means the whole m-bit symbol is erroneous. So while Reed-Solomon

codes are optimal at their symbol-wise error correction rate, they are not optimal

from a bit-wise perspective. This makes Reed-Solomon codes a bad choice for other

applications.

5 Conclusion

Thus, while they are a good example and are widespread, Reed-Solomon codes

remain only one of the many codes in use. Some of the other codes may be used

because they are more efficient at correcting certain error patterns, just as Reed-

Solomon codes are efficient for burst errors. Other codes may be preferable because

the simplicity of their underlying algorithms makes them faster to encode and de-

code. We saw that ISBN codes are one case where a simple algorithm is preferable

and good enough. Sometimes different codes are layered on top of one another to

correct a combination of error patterns well, or to balance simplicity with efficiency.

Whatever code or codes are used, the mathematics beneath is what is responsible for

the integrity of the data transfer.
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